
 

Objectives: 

1. Karnaugh Map definition. 
2. Karnaugh map construction. 

 Two variables K-maps. 

 Three variables K-maps. 

 Four variables K-maps. 
3. Summary 

1) Karnaugh map definition 
 The karnaugh map (k-map) is a graphical tool used to simplify (minimize) the logic 

functions, so that it can be implemented with minimum number of gates (minimum 

number of product terms and minimum number of literals). 

 The K-map is used to convert a truth table to its corresponding logic circuit. 

2) Karnaugh map construction  

 Two variables K-maps. 
 A two- variable function has four possible minterms, we can rearrange these 

minterms into a karnaugh map: 

 

Example: 
          ̅ 

 The Karnaugh map for this function will be: 

Note: we can easily from the k-map see which 

minterms contain common literal: 
 Minterms on the left and right sides contain  ̅ 

and   respectively. 
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 Minterms in the top and bottom rows contain  ̅ and   respectively. 

 

  

 

 

 

 

 Karnaugh map simplification: 
 The K-map squares labeled so that horizontally adjacent square differ only in one 

variable. 

Example 1:- Imagine a two-variable sum of minterms, both of these minterms 

appear in the top row of a karnaugh map, which means that they both contain 

the literal  ̅. 

 

 

 

 

 

 

Example 2:      ̅        –minimize it using K-map. 

Solution: 

 Both minterms appear in the right- side where   is uncomplemented. 

 Thus, we can reduce  ̅        = just to  . 
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Note: each case in the 
truth table 

corresponds to a 

square in the K-map 
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Example 3:       ̅  ̅     ̅         –minimize it using K-map. 

Solution: 

 We have  ̅  ̅     ̅  in the top row, 

corresponding to  ̅ 

 There's also  ̅        in the right side 

corresponding to  . 

 The result     ̅    . 

Using algebraic simplification: 
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 Three- variables K-map  

 For  (     ) there are      minterms. 

 Representation truth table using K-map 

o Different versions:  
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Grouping (ordering, looping) 

 The groups can be 2, 4, or 8 adjacent squares: 

 2 squares  1 variable can be canceled. 

 4 squares  2 variables can be canceled. 

 8 squares  3 variables can be canceled. 

 

 Examples:-  

Squares 
Common 

Literal (s) 

(1) and (2)   ̅ ̅ 

(2) and (3)  ̅  

(1) and (4)  ̅  ̅ 

(1), (2), (5) and (6)  ̅ 

(3), (4), (7) and (8)   

(1), (2), (3) and (4)  ̅ 

(5), (6), (7) and (8)   

(1), (5), (4) and (8) 

(Wrapping case is also adjacent) 
 ̅ 

 

 To proof the wrapping case (the last one in the table) algebraically, we can write: 
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 "Adjacency" includes wrapping around the left and right side. 
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Example 1: Simplify the following logical function using K-map. 

  (     )           ̅        

Solution: 
Step 1: the expression must be in a sum of minterms form, so we should convert it:(two 

ways to do that):  
1. Using logical rules (algebraically). 
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2. Make the truth table and read the minterms. 
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Step 2: fill one's (for the minterms) in karnaugh map; zero's for other squares. 

 

 

 

 
 
 
 
 
 
Step 3: grouping (looping): 

2 groups:  (m1) and (m5) 

   (m6) and (m7) 

Step 4: simplify: 

          ̅   

 To proof the result: 

inputs 
Output Terms 

replacement  
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Grouping the minterms:- 
 Grouping together all the    in the K-map. 

o Make rectangles of    (1, 2, 4, …). 

o All the    in the map should be included in at least one rectangle. 

o Do not include any of the   . 
o Each group corresponds to one product term. 

o Make each rectangle as large as possible. 

o We can overlap the rectangles, if that makes them lager. 

 
Example 2: Simplify the following logical function using K-map. 

       ̅ ̅   ̅ ̅ ̅ 

Solution: 

       ̅ ̅   ̅ ̅ ̅     ̅        ̅ ̅   ̅ ̅ ̅ 

 
 
 
 
 
 
 
 
 
 
 
 
Example 3: Simplify the following logical function using K-map. 

   ̅ ̅    ̅ ̅    ̅     ̅       
Solution: 
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Quad: 
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Couple: 
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